

India's Best Institute for IES, GATE & PSUs

GATE 2019 Electronics Engineering

Click here for Questions and Solutions

Date of Exam: 9/2/2019

Scroll down to view

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | **Ph:** 011-45124612, 9958995830

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

SECTION A: GENERAL APTITUDE

Q.1 When he did not come home, she	e him lying dead on the roadside somewhere
------------------------------------	--

(a) notice

(b) looked

(c) concluded

(d) pictured

Ans. (d)

> When he did not come home, she pictured him lying dead on the roadside somewhere. "pictured" is the most appropriate option in this situation as she is imagining or creating an image of somebody/something in her mind.

■ ● ■ End of Solution

The strategies that the company ____ to sell its products ____ house-to-house Q.2 marketing.

(a) used, includes

(b) uses, includes

(c) use, includes

(d) uses, including

Ans. (b)

> "Company" is singular, hence, "uses" would be the correct option in blank 1. "products" is plural, hence, "include" would be the correct option in blank 2.

— ● ● ■ End of Solution

Q.3 It would take one machine 4 hours to complete a production order and another machine 2 hours to complete the same order. If both machines work simultaneously at their respective constant rates, the time taken to complete the same order is ____ hours.

(a) 7/3

(b) 3/4

(c) 2/3

(d) 4/3

Ans. (d)

Machine X = 4 hours

Machine Y = 2 hours

In 1 hour X can work = $\frac{1}{4}$

In 1 hour Y can work = $\frac{1}{2}$

In 1 hour (X + Y) can work $= \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$

(X + Y) together = $\frac{4}{3}$ hours

End of Solution

Q.4 The boat arrived ____ dawn.

(a) on

(b) at

(c) in

(d) under

ESE 2019

Commencing from

20th Feb, 2019

These batches are offered only at **Delhi** Centre.

Commencing from

17th Mar, 2019

Test series will be conducted at **all MADE EASY** centres across India.

Features:

- Very useful to develop numerical solving approach & improving writing skills.
- Special focus on improving answer layout specially for theory questions.
- Classes will be delivered by senior faculties.
- Updated Mains workbook for every subject having varied practice question sets.
- Test series will be conducted on every Sunday in synchronisation with the subject taught in class.
- Discussion on probable questions.
- · Comprehensive and in-depth discussion on variety of conventional questions, thus strengthening fundamental concepts.

Batch	Course Duration	Class Duration	Test Series
Details	90 days 300 - 350 hours	5-6 days a week and 6-7 hours a day	Every Sunday

Streams	Batch Code	Batch Commencing Date	atch Commencing Date Venue (Delhi)	
ME	А	20-Feb-2019	Ghitorni Centre	7:30 AM to 1:30 PM
ME	В	20-Feb-2019	Ghitorni Centre	3:00 PM to 9:00 PM
ME	С	20-Feb-2019	20-Feb-2019 Saket Centre	
CE	А	21-Feb-2019	Ignou Road Centre	7:30 AM to 1:30 PM
CE	В	21-Feb-2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EE	А	22-Feb-2019	Lado Sarai Centre	7:30 AM to 1:30 PM
EE	В	22-Feb-2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EC	А	22-Feb-2019	Lado Sarai Centre	7:30 AM to 1:30 PM

Hostel facility will be arranged

Fee Structure	Program	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, Post-GATE, ESE+ GATE, GATE Batches	Non MADE EASY students
	Mains Exclusive Batch (Inclusive of ESE-2019 Mains Offline Test Series)	₹ 18,500	₹ 22,500
	ESE 2019 Mains Offline Test Series	Rs. 3,500/- Rs. 2,500/-	Rs. 4,500/- Rs. 3,500/-

Rs. 1000/- Discount on test series valid till **15-02-2019**

Date of Test: 09-02-2019

Ans. (b)

> Option 1 i.e. "on" is used when one is talking about a day of the week e. g. on Thursday, or a particular part of a date e.g. on Sunday evening, or a particular date e.g. on 9th March.

> Option 3 i.e. "in" is used when one is talking about a month e.g. in June, or a season e.g. in winter, or a specific year e.g. in 2019.

Option 4 i.e. "under" is absurd in this situation.

Option 2 i.e. "at" is used when one is referring to a particular time e.g. at dawn, or a calendar festival season e.g. at Christmas.

End of Solution

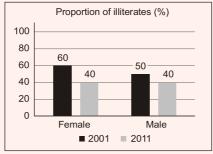
- Q.5 Five different books (P, Q, R, S, T) are to be arranged on a shelf. The books R and S are to be arranged first and second, respectively from the right side of the shelf. The number of different orders in which P, Q and T may be arranged is ______
 - (a) 12

(b) 2

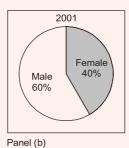
(c) 120

(d) 6

Ans. (d)


Here R and S are fixed in 1st and 2nd places from right.

Therefore arrangement of


P, Q,
$$T = {}^{3}P_{3} = 3! = 6$$


End of Solution

Q.6 The bar graph in Panel (a) shows the proportion of male and female illiterates in 2001 and 2011. The proportions of males and females in 2001 and 2011 are given in Panel (b) and (c), respectively. The total population did not change during this period. The percentage increase in the total number of literates from 2001 to 2011 is ____.

Panel (a)

Panel (c)

Date of Test: 09-02-2019

- (a) 35.43
- (c) 30.43

- (b) 34.43
- (d) 33.43

Ans. (c)

Let total population

in
$$2001 = 100$$

in
$$2011 = 100$$

In 2001, males = 60, females = 40

illiterates,

$$50\%$$
 of $60 = 30$

$$50\% \text{ of } 60 = 24$$

literates =
$$100 - 54 = 46$$

In 2011, males = 50, females = 50

illiterates,

$$40\%$$
 of $50 = 20$

$$40\% \text{ of } 50 = 20$$

40

literates =
$$100 - 40 = 60$$

Percentage of increase literates from 2001 to 2011 = $\frac{60-46}{46} \times 100 = 30.43$.

= ● ● ■ End of Solution

- Q.7 Two design consultants, P and Q, started working from 8 AM For a client. The client budgeted a total of USD 3000 for the consultants. P stopped working when the hour hand moved by 210 degrees on the clock. Q stopped working when the hour hand moved by 240 degrees. P took two lea breaks of 15 minutes each during her shift, but took no lunch break. Q took only one lunch break for 20 minutes, but no tea breaks. The market rate for consultants is USD 200 per hour and breaks are not paid. After paying the consultants, the client shall have USD _____ remaining in the budget.
 - (a) 433.33

(b) 000.00

(c) 300.00

(d) 166.67

Ans. (d)

P and Q started 8 am

1 hour = 30

$$P = \frac{210}{30} = 7 \text{ hours}$$

$$Q = \frac{240}{30} = 8 \text{ hours}$$

After break time,

P = 7:30 min = 6 hours 30 min

Q = 8:20 min = 7 hours 40 minAfter break time,

Total time = 6 hours 30 min + 7 hour 40 min

= 14 hours 10 min

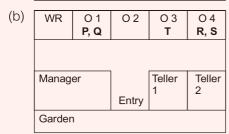
Detailed Solutions of GATE 2019: Electronics Engineering Date of Test: 09-02-2019

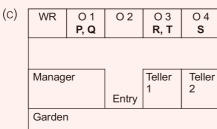
$$= 14 \text{ hour} + \frac{10}{16} \text{ hour}$$

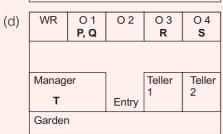
$$= 14 \text{ hour} + \frac{1}{6} \text{ hour} = \frac{85}{6} \text{ hours}$$

In every 1 hour USD 200

$$\frac{85}{6} \text{ hours } = \frac{85}{6} \times 200 = 2833.33$$


$$\text{Remaining} = 3000 - 2833.33 = 166.666666 = 166.67$$


Five people P, Q, R, S and T work in a bank. P and Q don't like each other but have Q.8 to share an office till T gets a promotion and moves to the big office next to the garden. R, who is currently sharing an office with T wants to move to the adjacent office with S, the handsome new intern. Given the floor plan, what is the current location of Q, R and T?


(O = Office, WR = Washroom)

■ ● ● End of Solution

(a)	WR	01	02	O 3	04
` /		Р	0 2 Q	O 3 R	0 4 S
	Manag	er	Entry	Teller 1	Teller 2
	Garder	1			

Detailed Solutions of GATE 2019 : Electronics Engineering Date of Test: 09-02-2019

Ans.	(c) Only option (c) shows P and Q in san in the adjacent office. Thus, option (c)			S being
Q.9	Four people are standing in a line facing One is an engineer, one is a doctor, on that: 1. Mathew is not standing nest to Se 2. There are two people standing bet 3. Rahul is not a doctor. 4. The teacher and the dancer are st 5. Seema is turning to her right to sp Who among them is an engineer? (a) Lohit (c) Seema	e a teacher and a ema. ween Lohit and th	nul, Mathew, Seema a unother a dancer. You ne engineer. ch other.	and Lohit. u are told
Ans.	(d) According to given conditions sequen Lohit, Seema, Rahul, Mathew, ↓ Doctor Engineer ∴ Engineer = Mathew	` '	Given Facing You Right	Right Left
Q.10	"Indian history was written by British history but not always impartial. History had subservient to the glory of the Union Jack picture." From the text above, we can infer that Indian history written by British historical was well documented and research (b) was well documented and not research (c) was not well documented and research (d)	to serve its purpose. Latter-day Indian :: ans hed but was some earched but was a gearched and was	I documented and res pose: Everything wa scholars presented a etimes biased always biased sometimes biased	as made
Ans.	(a) The passage says" extremely well document that Indian history written researched but was sometimes biased	nented and researd	ched, but not always in	nted and

■ ● ● End of Solution

SECTION B: TECHNICAL

Q.1 The families of curves represented by the solution of the equation

$$\frac{dy}{dx} = -\left(\frac{x}{y}\right)^n$$

for n = -1 and n = +1, respectively, are

- (a) Hyperbolas and Parabolas (b) Hyperbolas and Circles
- (c) Parabolas and Circles
- (d) Circles and Hyperbolas

Ans. (b)

$$\frac{dy}{dx} = -\left(\frac{x}{y}\right)^n$$

$$n = -1, \qquad \frac{dy}{dx} = -\frac{y}{x}$$

$$\frac{dy}{y} = -\frac{dx}{x}$$

$$\int \frac{1}{y} dy = -\int \frac{1}{x} dx$$

$$\ln y = -\ln x + \ln c$$

$$\ln(yx) = \ln c$$

$$xy = c \qquad \text{Represents rectangular hyperbola}$$

$$n = 1, \qquad \frac{dy}{dx} = -\frac{x}{y}$$

$$ydy = -x dx$$

$$\int ydy = -\int x dx$$

$$\frac{y^2}{2} = -\frac{x^2}{2} + c$$

Q.2 In the table shown, List-I and List-II, respectively, contain terms appearing on the lefthand side and the right-hand side of Maxwell's equations (in their standard form). Match the left-hand side with the corresponding right-hand side.

 $x^2 + y^2 = 2c$ Represents family of circles

List-I

1. ∇. \vec{D}

P. 0

List-II

2. $\nabla \times \vec{E}$

Q. ρ

3. ∇. \vec{R}

R. $-\frac{\partial \vec{B}}{\partial t}$

4. $\nabla \times \vec{H}$

S. $\overline{J} + \frac{\partial \vec{D}}{\partial t}$

■ ● ■ End of Solution

Date of Test: 09-02-2019

- 1-R, 2-Q, 3-S, 4-P (a)
- (b) 1-Q, 2-S, 3-P, 4-R
- (c) 1-P, 2-R, 3-Q, 4-S
- (d) 1-Q, 2-R, 3-P, 4-S

Ans. (d)

$$\nabla \cdot \vec{D} = \rho_{v}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0$$

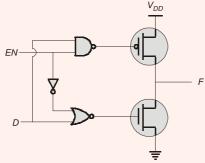
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

End of Solution

- Q.3 Radiation resistance of a small dipole current element of length *l* at a frequency of 3 GHz is 3 ohms. If the length is changed by 1%, then the percentage change in the radiation resistance, rounded off to two decimal places, is_____%.
- Ans. (2.01)

Radiation resistance of a small dipole current element of length 'l' is

$$R_{\text{rad}} = 80\pi^2 \left(\frac{l}{\lambda}\right)^2 \implies R \propto l^2$$


$$\frac{R_2}{R_1} = \left(\frac{l_2}{l_1}\right)^2$$

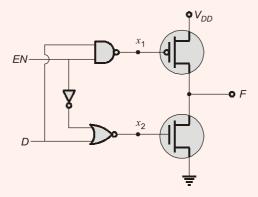
If length is changed by 1% then percentage change in the radiation resistance.

$$\frac{R_2}{R_1} = \left(\frac{1.01l}{l}\right)^2 = 1.0201$$

Percentage change in radiation resistance = $\frac{R_2 - R_1}{R_1} \times 100 = 0.0201 \times 100 = 2.01\%$

In the circuit shown, what are the values of F for EN = 0 and EN = 1, respectively? **Q.4**

(a) 0 and 1


(b) Hi-Z and D

(c) Hi-Z and \bar{D}

(d) 0 and D

Date of Test: 09-02-2019

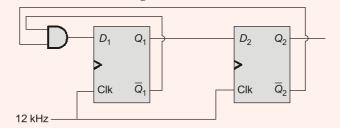
(b) Ans.

When
$$EN = 0$$
:

When
$$EN = 0$$
: $x_1 = (\overline{D \cdot 0}) = 1 \Rightarrow PMOS \text{ is in OFF state}$

$$x_2 = (\overline{1+D}) = 0 \implies NMOS \text{ is in OFF state}$$

Both the transistors are in OFF state, which offers high impedance.


When
$$EN = 1$$
:

When
$$EN = 1$$
: $x_1 = (\overline{D \cdot 1}) = \overline{D}$

$$x_2 = (\overline{0 + D}) = \overline{D}$$

$$F = D$$

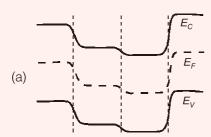
Q.5 In the circuit shown, the clock frequency, i.e., the frequency of the Clk signal, is 12 kHz. The frequency of the signal at Q_2 is _____ kHz.

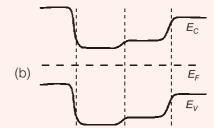
Ans. (4)

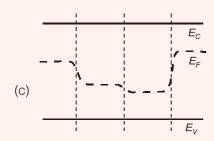
$$D_1 = \overline{Q}_2 \overline{Q}_1 = \overline{Q}_2 + \overline{Q}_1$$

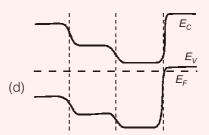
Р	S	D ₂	<i>D</i> ₁	N	S	
Q ₂	Q ₁	\bigwedge	${}$	Q ₂ ⁺	Q_1^{\dagger}	
0	0	0	1	0	1	-
0	1	1	0	1	0	
1	0	0	0	0	0	

$$MOD = 3$$

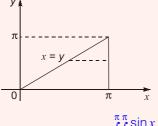

$$f_{Q2} = \frac{f_{\text{clk}}}{3} = \frac{12}{3} \text{ kHz} = 4 \text{ kHz}$$

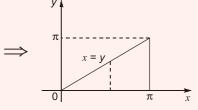

End of Solution


● ● End of Solution


Date of Test: 09-02-2019

Q.6 Which one of the following options describes correctly the equilibrium band diagram at $T = 300 \text{ K of a Silicon } pnn^+p^{++} \text{ configuration shown in the figure?}$




Ans. (d)

End of Solution

- The value of integral $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin x}{x} dx dy$, is equal to ______. Q.7
- (2) Ans.

$$x = y$$
; $x = \pi$

$$= \int_{0}^{\pi} \int_{y}^{\pi} \frac{\sin x}{x} dx dy = \int_{0}^{\pi} \frac{\sin x}{x} (y) \Big|_{0}^{x} dx$$

$$= \int_{0}^{\pi} \frac{\sin x}{x} (x) dx = \int_{0}^{\pi} \sin x dx = (-\cos x) \Big|_{0}^{\pi}$$

$$= -\cos \pi + \cos 0 = 1 + 1 = 2$$

End of Solution

- √ Quality Teaching
- ✓ Comprehensive Study Material
- √ Well Planned Curriculum
- √ Professionally Managed

Announcing

NEW BATCHES for **ESE 2020** & **GATE 2020**

1 Yr/2Yrs CLASSROOM COURSES

··· Early start ··· Extra edge

Batches Commencement Dates

Regular Batches

Delhi				
14-Feb-2019				
14-Feb-2019				
18-Feb-2019				
Mid-Feb, 2019				
16-May-2019				

Weekend Batches

	Delhi	Noida
CE	09-Feb-2019	16-Feb-2019
ME	NA	03-Feb-2019
EE	23-Feb-2019	16-Feb-2019
EC	23-Feb-2019	16-Feb-2019
CS	17-Feb-2019	

Rest of India (Regular Batches)

Patna	Lucknow	Bhopal	Indore	Jaipur
25-Feb'19	20-Feb'19	25-Feb'19	20-Feb'19	17-Feb'19
		L	l	1
Pune	Hyderabad	Bhubaneswar	Kolkata	

Admission open

Corporate office: 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830

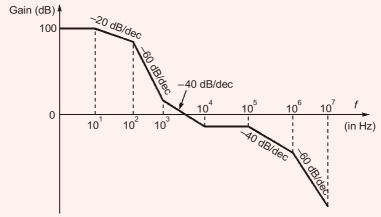
Q.8 If X and Y are random variables such that
$$E[2X + Y] = 0$$
 and $E[X + 2Y] = 33$, then $E[X] + E[Y] =$ _____.

(11)Ans.

then,
$$E[2X + Y] = 0$$
 and $E[X + 2Y] = 33$
 $2E[X] + E[Y] = 0$ and $E[X] + 2E[Y] = 33$
 $3E[X] + 3E[Y] = 0 + 33 = 33$
 $E[X] + E[Y] = 11$

End of Solution

- Q.9 A linear Hamming code is used to map 4-bit messages to 7-bit codewords. The encoder mapping is linear. If the message 0001 is mapped to the codeword 0000111, and the message 0011 is mapped to the codeword 1100110, then the message 0010 is mapped to
 - (a) 0010011


(b) 1100001

(c) 1111000

(d) 1111111

Ans. (b)

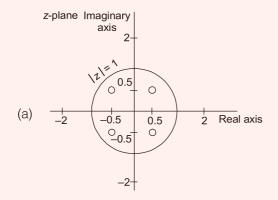
Q.10 For an LTI system, the Bode plot for its gain is as illustrated in the figure shown. The number of system poles N_p and the number of system zeros N_z in the frequency range 1 Hz $\leq f \leq 10^7$ Hz is

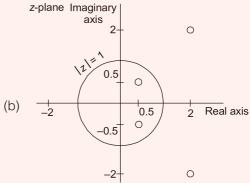
(a) $N_p = 6$, $N_z = 3$ (c) $N_p = 5$, $N_z = 2$

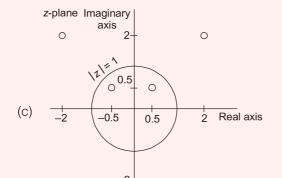
- (b) $N_p = 7$, $N_z = 4$ (d) $N_p = 4$, $N_z = 2$

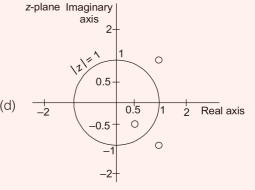
● ● End of Solution

Detailed Solutions of GATE 2019: Electronics Engineering Date of Test: 09-02-2019


(a) Ans.


Corner frequency (in Hz)	No. of poles (or) zeros
10	1 pole
10 ²	2 poles
10 ³	1 zero
10 ⁴	2 zeros
10 ⁵	2 poles
10 ⁶	1 pole


Number of poles $(N_p) = 6$ Number of zeros $(N_z) = 3$


Let H(z) be the z-transform of a real-valued discrete-time signal h[n]. If $P(z) = H(z)H\left(\frac{1}{z}\right)$ Q.11

has a zero at $z = \frac{1}{2} + \frac{1}{2}j$, and P(z) has a total of four zeros, which one of the following plots represents all the zeros correctly?

End of Solution

Date of Test: 09-02-2019

Ans. (d)

$$P(Z) = H(z) H\left(\frac{1}{z}\right)$$

- (i) h(n) is real. So, p(n) will be also real
- (ii) $P(z) = P(z^{-1})$

From (i): If z_1 is a zero of P(z), then z_1^* will be also a zero of P(z).

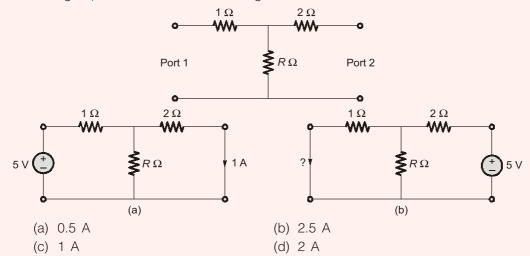
From (ii): If z_1 is a zero of P(z), then $\frac{1}{z_1}$ will be also a zero of P(z).

So, the 4 zeros are,

$$Z_{1} = \frac{1}{2} + \frac{1}{2}j$$

$$Z_{2} = Z_{1}^{*} = \frac{1}{2} - \frac{1}{2}j$$

$$Z_{3} = \frac{1}{Z_{1}} = \frac{1}{\frac{1}{2} + \frac{1}{2}j} = 1 - j$$


$$Z_{4} = \left(\frac{1}{Z_{1}}\right)^{*} = Z_{3}^{*} = 1 + j$$

So, option (d) is correct.

End of Solution

Q.12 Consider the two-port resistive network shown in the figure. When an excitation of 5 V is applied across Port 1, and Port 2 is shorted, the current through the short circuit at Port 2 is measured to be 1 A (see (a) in the figure).

Now, if an excitation of 5 V is applied across Port 2, and Port 1 is shorted (see (b) in the figure), what is the current through the short circuit at Port 1?

Date of Test: 09-02-2019

Ans. (c)

According to reciprocity theorem,

In a linear bilateral single source network the ratio of response to excitation remains the same even after their positions get interchanged.

$$\therefore \qquad \frac{I}{5} = \frac{1}{5} \Rightarrow I = 1 \text{ A}$$

End of Solution

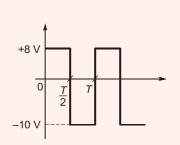
Consider the signal $f(t) = 1 + 2\cos(\pi t) + 3\sin(\frac{2\pi}{3}t) + 4\cos(\frac{\pi}{2}t + \frac{\pi}{4})$, where t is in Q.13 seconds. Its fundamental time period, in seconds, is _____

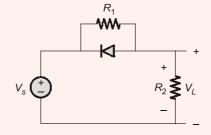
Ans. (12)

$$f(t) = 1 + 2\cos(\pi t) + 3\sin\left(\frac{2\pi}{3}t\right) + 4\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$$

$$\omega_1 = \pi$$

$$\omega_2 = \frac{2\pi}{3}$$

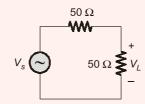

$$\omega_3 = \frac{\pi}{2}$$


$$\omega_0 = GCD\left(\pi, \frac{2\pi}{3}, \frac{\pi}{2}\right) = \frac{\pi}{6}$$

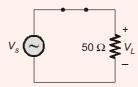
Fundamental period, $N = \frac{2\pi}{\omega_0} = \frac{2\pi}{(\pi/6)} = 12$

End of Solution

In the circuit shown, V_s is a square wave of period $\mathcal T$ with maximum and minimum values Q.14 of 8 V and -10 V, respectively. Assume that the diode is ideal and R_1 = R_2 = 50 Ω . The average value of V_i is _____ volts (rounded off to 1 decimal place).

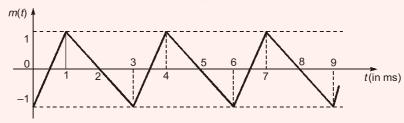


Date of Test: 09-02-2019


Ans. (-3)

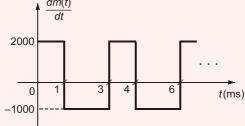
When $V_s = 8 \text{ V} \Rightarrow \text{diode is in reverse bias}$

$$V_L = \frac{8 \times 50}{50 + 50} = 4 \text{ V}$$


If $V_s = -10$ V, diode is in forward bias

Average value of
$$V_L = \frac{\text{Area}}{\text{Time period}} = \frac{4 \times 0.5T + (-10) \times 0.5T}{T} = -3 \text{ V}$$

End of Solution


Q.15 The baseband signal m(t) shown in the figure is phase-modulated to generate the PM signal $\phi(t) = \cos(2\pi f_c t + km(t))$. The time t on the x-axis in the figure is in milliseconds. If the carrier frequency is $f_c = 50$ kHz and $k = 10\pi$, then the ratio of the minimum instantaneous frequency (in kHz) to the maximum instantaneous frequency (in kHz) _ (rounded off to 2 decimal places).

Ans. (0.75)

$$f_i = \frac{1}{2\pi} \frac{d\theta(t)}{dt} = f_c + \frac{k}{2\pi} \frac{dm(t)}{dt} = f_c + 5 \frac{dm(t)}{dt}$$

$$\oint \frac{dm(t)}{dt} dt$$

So,
$$f_{i \text{ (min)}} = 50 \text{ kHz} - (5 \times 1000 \text{ Hz}) = 45 \text{ kHz}$$

$$f_{i \text{ (max)}} = 50 \text{ kHz} + (5 \times 2000 \text{ Hz}) = 60 \text{ kHz}$$

$$f_{i \text{ (min)}} = \frac{45}{1000} = 0.75$$

 $\frac{f_{i(\text{min})}}{f_{i(\text{max})}} = \frac{45}{60} = 0.75$

End of Solution

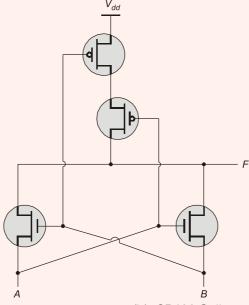
Q.16 The number of distinct eigen values of the matrix

$$A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

is equal to _____

Ans. (3)

$$A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

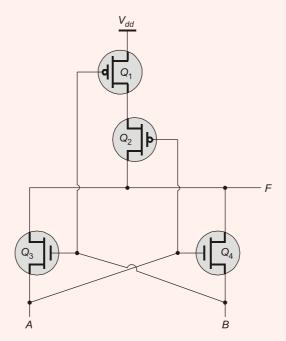

Eigen values are 2, 1, 3, 2

Distinct eigen values are 2, 1, 3

.. Number of distinct eigen values = 3

End of Solution

Q.17 In the circuit shown, A and B are the inputs and F is the output. What is the functionality of the circuit?



- (a) XNOR
- (c) XOR

- (b) SRAM Cell
- (d) Latch

Date of Test: 09-02-2019

Ans. (a)

Α	В	Q ₁	Q ₂	Q_3	Q_4	F
0	0	ON	ON	OFF	OFF	1
0	1	OFF	ON	ON	OFF	0
1	0	ON	OFF	OFF	ON	0
1	1	OFF	OFF	ON	ON	1

So, the given logic circuit acts as an XNOR gate.

Q.18 Let Y(s) be the unit-step response of a causal system, having a transfer function

$$G(s) = \frac{3-s}{(s+1)(s+3)}$$

that is, $Y(s) = \frac{G(s)}{s}$. The forced response of the system is

(a) u(t)

- (c) $u(t) 2e^{-t}u(t) + e^{-3t}u(t)$
- (d) $2u(t) 2e^{-t}u(t) + e^{-3t}u(t)$

Ans. (c)

Given,
$$G(s) = \frac{3-s}{(s+1)(s+3)}$$

$$Y(s) = \frac{G(s)}{s} = \frac{3-s}{s(s+1)(s+3)}$$

Using partial fractions, we get,

$$Y(s) = \frac{A}{s} + \frac{B}{(s+1)} + \frac{C}{(s+3)}$$

Date of Test: 09-02-2019

$$A(s^2 + 4s + 3) + B(s^2 + 3s) + C(s^2 + s) = 3 - s$$

 $A + B + C = 0$

$$4A + 3B + C = -1$$

and

$$3A = 3$$

Therefore, we get,

$$A = 1, B = -2 \text{ and } C = 1$$

So,

$$Y(s) = \frac{1}{s} - \frac{2}{(s+1)} + \frac{1}{(s+3)}$$

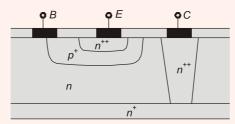
and

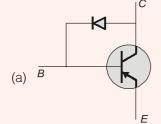
$$y(t) = u(t) - 2e^{-t}u(t) + e^{-3t}u(t)$$

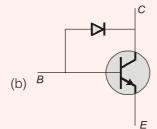
End of Solution

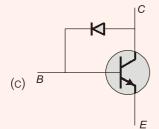
- Q.19 Which one of the following functions is analytic over the entire complex plane?
 - (a) cos(z)

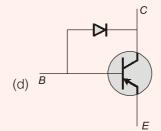
(c) ln(z)


(d) $\frac{1}{1-z}$


Ans. (a)


 $f(z) = \cos z$ is analytic every where.


End of Solution


Q.20 The correct circuit representation of the structure shown in the figure is

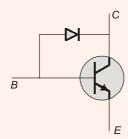
Admission Open in

Classroom Course for RRB-JE (CBT-1)

Classroom Centres : Delhi Lucknow Patna

Batches commencing from 15th Feb, 2019

All streams are eligible

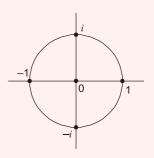

Fee Structure : Classroom Course (RRB-JE)				
Exam	Course Duration	Timing	Freshers	Ex. MADE EASY Students Enrolled in any classroom/postal courses
CBT 1 (only)	50 Days (180-200 hours)	7 days a week 4 hours per day	Rs. 10,170 + GST = Rs. 12,000/-	Rs. 7,628 + GST = Rs. 9,000/-

Delhi:Lucknow:Patna:7303231082,09919111168,0612-2356615,7303212325084000294229955991166

www.madeeasy.in

Date of Test: 09-02-2019

(b) Ans.

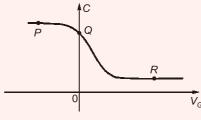


The value of the contour integral $\frac{1}{2\pi j} \oint \left(z + \frac{1}{z}\right)^2 dz$ evaluated over the unit circle |z| = 1Q.21

(0) Ans.

$$\frac{1}{2\pi j} \oint \left(z + \frac{1}{z} \right)^2 dz \text{ where } C \text{ is } |z| = 1$$

$$I = \frac{1}{2\pi i} \int_{C} \frac{(z^2 + 1)^2}{z^2} dz$$



z = 0 lies inside the circle,

$$I = \frac{1}{2\pi i} \left[\frac{2\pi j}{1!} \frac{d}{dz} (z^2 + 1)^2 \right]_{z=0} = \left[\frac{d}{dz} (z^2 + 1)^2 \right]_{z=0}$$
$$= \left[2(z^2 + 1) \times 2z \right]_{z=0} = 0$$

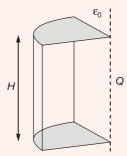
End of Solution

The figure shows the high-frequency C-V curve of a MOS capacitor (at T=300 K) with Q.22 ϕ_{ms} = 0 V and no oxide charges. The flat-band, inversion, and accumulation conditions are represented, respectively, by the points

- (a) Q, R, P
- (c) Q, P, R

- (b) P, Q, R
- (d) R, P, Q

Ans. (a)


Since $\phi_{ms} = 0$, the MOS-capacitor is ideal.

Point P Represents accumulation

Point Q Represents flat band

Point R Represents Inversion

What is the electric flux $(\int \vec{E} \cdot d\hat{a})$ through a quarter-cylinder of height H (as shown in Q.23 the figure) due to an infinitely long line charge along the axis of the cylinder with a charge density of Q?

(a)
$$\frac{4H}{Q\epsilon_0}$$

(c)
$$\frac{HQ}{\varepsilon_0}$$

(b)
$$\frac{H\epsilon_0}{40}$$

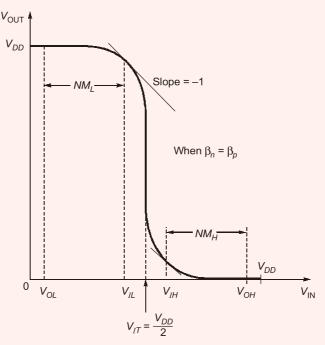
(d)
$$\frac{HQ}{4\epsilon_0}$$

Ans. (d)

> Electric field intensity (\vec{E}) at ' ρ ' distance due to infinite long line having line charge density Q is

$$\vec{E} = \frac{Q}{2\pi\epsilon_0 \rho} \hat{a}_{\rho}$$

$$\int \vec{E} \cdot \vec{da} = \iint \frac{Q}{2\pi\epsilon_0 \rho} \hat{a}_{\rho} \cdot \rho \, d\phi \, dz \hat{a}_{\rho}$$


$$= \frac{Q}{2\pi\epsilon_0} \int_{C_{\sigma}} d\phi \int_{Z_{\sigma=0}}^{H} dz = \frac{Q}{2\pi\epsilon_0} \left(\frac{\pi}{2}\right) H = \frac{HQ}{4\epsilon_0}$$

End of Solution

- A standard CMOS inverter is designed with equal rise and fall times ($\beta_n = \beta_p$). If the Q.24 width of the pMOS transistor in the inverter is increased, what would be the effect on the LOW noise margin (NM_{I}) and the HIGH noise margin NM_{II} ?
 - (a) NM_{I} decreases and NM_{H} increases.
 - (b) No change in the noise margins.
 - (c) Both NM_I and NM_H increase.
 - (d) NM_I increases and NM_H decreases.

Date of Test: 09-02-2019

(d) Ans.

Making PMOS wider, shifts input transition point (V_{IT}) towards V_{DD} . Making NMOS wider, shifts input transition point (V_{TT}) towards zero. So, as PMOS made wider, NM_I increases and NM_H decreases.

Q.25 Let Z be an exponential random variable with mean 1. That is, the cumulative distribution function of Z is given by

$$F_Z(x) = \begin{cases} 1 - e^{-x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Then $Pr(Z > 2 \mid Z > 1)$, rounded off to two decimal places, is equal to _____.

Ans. (0.37)

Required probability = $\frac{P[(z>2) \cap (z>1)]}{P[z>1]} = \frac{P[z>2]}{P[z>1]}$ Sol.

$$P(z \le 2) = 1 - e^{-2} \Rightarrow P(z > 2) = e^{-2}$$

$$P(z \le 1) = 1 - e^{-1} \Rightarrow P(z > 1) = e^{-1}$$

So, Required probability = $\frac{e^{-2}}{e^{-1}} = e^{-1} \simeq 0.37$

End of Solution

End of Solution

Consider a differentiable function f(x) on the set of real numbers such that f(-1) = 0Q.26 and $|f'(x)| \le 2$. Given these conditions, which one of the following inequalities is necessarily true for all $x \in [-2, 2]$?

(a)
$$f(x) \le 2|x+1|$$

(b)
$$f(x) \le \frac{1}{2}|x|$$

(c)
$$f(x) \le 2|x|$$

(d)
$$f(x) \le \frac{1}{2} |x + 1|$$

Ans. (a)

Given that, $|f'(x)| \le 2$; f(-1) = 0

$$-2 \le f'(x) \le 2$$

$$x \in [-2, 2] \to 2 \le x \le 2$$

.. By applying mean value theorem in [-1, 2]

$$-2 \le f'(x) \le 2$$

$$-2 \le \frac{f(2) - f(-1)}{2 - (-1)} \le 2$$

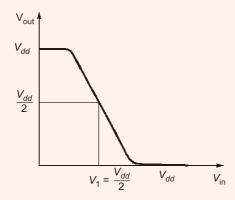
$$-2 \le \frac{f(2) - f(-1)}{3} \le 2$$

$$-6 \le f(2) - 0 \le 6$$

$$-6 \le f(2) \le 6$$

It is satisfied by only option (a).

A CMOS inverter, designed to have a mid-point voltage V_1 equal to half of V_{dd} , as shown Q.27


in the figure, has the following parameters:

$$V_{dd} = 3 \text{ V}$$

$$\mu_n C_{ox} = 100 \ \mu\text{A/V}^2$$
 ; $V_{tn} = 0.7 \ \text{V}$ for nMOS

$$\mu_{D}C_{OX} = 40 \ \mu\text{A/V}^{2} \; ; \; |V_{tD}| = 0.9 \ \text{V} \; \text{for pMOS}$$

The ratio of $\left(\frac{W}{L}\right)_{\Omega}$ to $\left(\frac{W}{L}\right)_{\Omega}$ is equal to _____ (rounded off to 3 decimal places).

Date of Test: 09-02-2019

(0.225)Ans.

 $I_{Dn} = I_{Dn}$ and both will be in saturation.

If
$$V_{IN} = \frac{V_{DD}}{2} = 1.5 \text{ V} = V_{GSN} = V_{SGP}$$

$$\Rightarrow \frac{1}{2} \left(\mu_n C_{ox} \right) \left(\frac{W}{L} \right)_n \left[V_{GSN} - V_{TN} \right]^2 = \frac{1}{2} \left(\mu_p C_{ox} \right) \left(\frac{W}{L} \right)_p \left[V_{GSP} + V_{TP} \right]^2$$

$$100 \times 10^{-6} \left(\frac{W}{L}\right)_{n} [1.5 - 0.7]^{2} = 40 \times 10^{-6} \left(\frac{W}{L}\right)_{p} [1.5 - 0.9]^{2}$$

$$\Rightarrow \frac{\left(\frac{W}{L}\right)_n}{\left(\frac{W}{L}\right)_p} = \frac{40}{100} \times \frac{(0.6)^2}{(0.8)^2} = 0.225$$

Q.28 In an ideal pn junction with an ideality factor of 1 at T = 300 K, the magnitude of the reverse-bias voltage required to reach 75% of its reverse saturation current, rounded off to 2 decimal places, is_____ mV.

$$[k = 1.38 \times 10^{-23} \text{ JK}^{-1}, h = 6.625 \times 10^{-34} \text{ J-s}, q = 1.602 \times 10^{-19} \text{C}]$$

Ans. (35.83)

$$V_T = \frac{kT}{q} = \frac{1.38 \times 10^{-23} \times 300}{1.602 \times 10^{-19}} \text{ V} = 25.843 \text{ mV}$$

$$I = I_0 \left(e^{V/V_T} - 1 \right) = -\frac{3}{4} I_0$$

$$V = V_T \ln 0.25 = -35.83 \text{ mV}$$

$$V_R = |V| = 35.83 \,\text{mV}$$

Q.29 It is desired to find a three-tap causal filter which gives zero signal as an output to an input of the form

$$x[n] = c_1 \exp\left(-\frac{j\pi n}{2}\right) + c_2 \exp\left(\frac{j\pi n}{2}\right),$$

where c_1 and c_2 are arbitrary real numbers. The desired three-tap filter is given by

$$h[0] = 1, h[1] = a, h[2] = b$$

h[n] = 0 for n < 0 or n > 2

What are the values of the filter taps a and b if the output y[n] = 0 for all n, where x[n]is as given above?

Date of Test: 09-02-2019

(a)
$$a = 0$$
, $b = -1$

(b)
$$a = 1$$
, $b = 1$

(c)
$$a = -1$$
, $b = 1$

(d)
$$a = 0$$
, $b = 1$

Ans. (d)

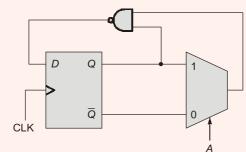
$$x(n) = c_1 e^{-j\frac{\pi}{2}n} + c_2 e^{j\frac{\pi}{2}n}$$

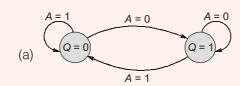
$$\omega_o = \frac{\pi}{2} \text{ rad/s}$$

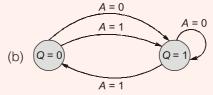
$$H(e^{j\omega}) = 1 + ae^{-j\omega} + be^{-j2\omega}$$

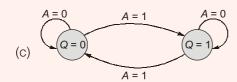
To get y(n) = 0,

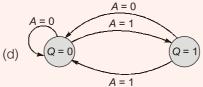
$$H(e^{j\omega_O}) = H(e^{j\omega})\Big|_{\omega = \frac{\pi}{2}} = 0$$


$$1 + ae^{-j\frac{\pi}{2}} + be^{-j2\frac{\pi}{2}} = 0$$


$$1 - ja - b = 0$$


From the given options, a = 0 and b = 1.

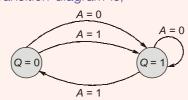

End of Solution


The state transition diagram for the circuit shown is Q.30

Ans. (b)

When
$$A = 0$$
, $Q_{n+1} = 1$

$$Q_{n+1} = 1$$


When
$$A = 1$$
, $Q_{n+1} = \overline{Q}_n$

$$Q = \overline{Q}_{-}$$

Detailed Solutions of

GATE 2019: Electronics Engineering Date of Test: 09-02-2019

So, the correct state transition diagram is,

End of Solution

Q.31 Let the state-space representation of an LTI system be $\dot{X}(t) = AX(t) + Bu(t)$, y(t) = CX(t) + du(t) where A, B, C are matrices, d is a scalar, u(t) is the input to the system, and y(t) is its output. Let $B = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ and d = 0. Which one of the following options for A and C will ensure that the transfer function of this LTI system is

$$H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$

(a)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{bmatrix}$$
 and $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ (b) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

(c)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

Ans. (c)

So,

$$X(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\frac{Y(s)}{U(s)} = \frac{Y(s)}{X_1(s)} \times \frac{X_1(s)}{U(s)} = 1 \times \frac{1}{s^3 + 3s^2 + 2s + 1}$$

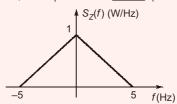
$$X_1(s)[s^3 + 3s^2 + 2s + 1] = U(s)$$

$$x_2 = \dot{x}_1(t) \Rightarrow X_2(s) = sX_1(s)$$

$$x_3 = \dot{x}_2(t) \implies X_3(s) = sX_2(s) = s^2X_1(s)$$

$$sX_3(s) = -X_1(s) - 2X_2(s) - 3X_3(s) + U(s)$$

$$\dot{x}_3(t) = -x_1(t) - 2x_2(t) - 3x_3(t) + u(t)$$

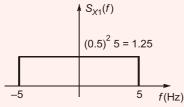

$$y(t) = x_1(t)$$

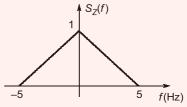
$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U(t)$$

$$y(t) = [1 \quad 0 \quad 0] x(t)$$

Date of Test: 09-02-2019

Let a random process Y(t) be described as Y(t) = h(t) * X(t) + Z(t), where X(t) is a white Q.32 noise process with power spectral density $S_v(f) = 5$ W/Hz. The filter h(t) has a magnitude response given by |H(f)| = 0.5 for $-5 \le f \le 5$, and zero elsewhere. Z(t) is a stationary random process, uncorrelated with X(t), with power spectral density as shown in the figure. The power in Y(t), in watts, is equal to W _____ (rounded off to two decimal places).




Ans. (17.5)

Let.

$$X_1(t) = h(t) * X(t)$$

$$S_{X1}(f) = |H(f)|^2 S_X(f)$$

Given that, Z(t) and X(t) are uncorrelated.

So,

$$S_{Y}(f) = S_{X1}(f) + S_{Z}(f)$$

Power in y(t),

$$P_{Y} = [\text{Area under } S_{X1}(f)] + [\text{Area under } S_{Z}(f)]$$

= (10 × 1.25) + (5 × 1) = 17.5 W

End of Solution

Q.33 Consider the homogeneous ordinary differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 3x \frac{dy}{dx} + 3y = 0, \quad x > 0$$

with y(x) as a general solution. Given that

$$y(1) = 1$$
 and $y(2) = 14$

the value of y(1.5), rounded off to two decimal places, is ______.

Ans. (5.25)

$$(x^2D^2 - 3xD + 3) = 0$$

$$(\theta(\theta - 1) - 3\theta + 3)y = 0$$

$$(\theta^2 - 4\theta + 3)v = 0$$

 $m^2 - 4m + 3 = 0$ AE is

$$m = 1, 3$$

$$CF = C_1 e^z + C_2 e^{3z}$$
$$y = C_1 x + C_2 x^3$$

Solution is

$$V = C_1 x + C_2 x^3$$

Page 26

...(i)

GATE 2019 RANK PREDICTOR

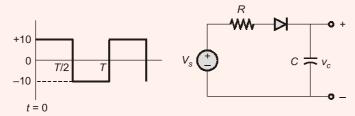
www.gaterankpredictor.madeeasy.in

Step 1Select Your Stream

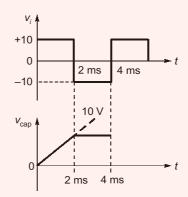
Step 2Select the session you appeared for

Step 3Paste the URL of your Response Sheet

and predict your


- All India Rank
- Normalized Marks

Click here to redirect at MADE EASY GATE Rank Predictor


Date of Test: 09-02-2019

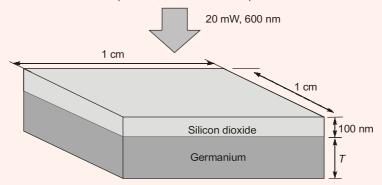
End of Solution

In the circuit shown. V_s is a 10 V square wave of period, T=4 ms with $R=500~\Omega$ Q.34 and $C = 10 \,\mu\text{F}$. The capacitor is initially uncharged at t = 0, and the diode is assumed to be ideal. The voltage across the capacitor (V_c) at 3 ms is equal to _____ volts (rounded off to one decimal place).

Ans. (3.3)

$$\tau = RC = 500 \times 10 \times 10^{-6} = 5 \text{ ms}$$

$$0 < t < \frac{t}{2}$$
: $v_{\text{cap}} = v_f + (v_i - v_f)e^{-t/\tau}$
= $10 + (0 - 10)e^{-t/RC}$


At
$$t = 2$$
 msec, $v_{\text{cap}} = 10 - 10e^{\frac{-2 \times 10^{-3}}{5 \times 10^{-3}}} = 3.296 \text{ V} \simeq 3.3 \text{ V}$

For 2 ms < t < 4 ms, diode is OFF and capacitor has no path to discharge. Hence, at t = 3 ms, $V_{\text{cap}} = 3.3 \text{ V}$.

End of Solution

Detailed Solutions of GATE 2019: Electronics Engineering Date of Test: 09-02-2019

A Germanium sample of dimensions 1 cm \times 1 cm is illuminated with a 20 mW. 600 nm Q.35 laser light source as shown in the figure. The illuminated sample surface has a 100 nm of loss-less Silicon dioxide layer that reflects one-fourth of the incident light. From the remaining light, one-third of the power is reflected from the Silicon dioxide- Germanium interface, one-third is absorbed in the Germanium layer, and one-third is transmitted through the other side of the sample. If the absorption coefficient of Germanium at 600 nm is 3×10^4 cm⁻¹ and the bandgap is 0.66 eV, the thickness of the Germanium layer, rounded off to 3 decimal places, is _____ µm.

Ans. (0.231)

$$P_{\text{absorbed}} = P_{\text{incident}} (1 - e^{-\alpha T})$$

$$\frac{1}{3} = \frac{2}{3} (1 - e^{-\alpha T})$$

$$\frac{2}{3} e^{-\alpha T} = \frac{1}{3}$$

where $\alpha = 3 \times 10^4$ cm⁻¹, absorption coefficient of Ge sample.

$$T = \frac{1}{\alpha} \ln(2) = \frac{1}{3 \times 10^4} \ln(2) \text{ cm} = 0.231 \mu\text{m}$$

Q.36 A rectangular waveguide of width w and height h has cut-off frequencies for TE₁₀ and TE₁₁ modes in the ratio 1 : 2. The aspect ratio w/h, rounded off to two decimal places, is _____.

Ans. (1.732)

$$f_{cmn} = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

 $f_{c10} = \frac{c}{2w}$ For TE₁₀ mode, ...(i)

and For TE₁₁ mode,
$$f_{c11} = \frac{c}{2} \sqrt{\left(\frac{1}{w}\right)^2 + \left(\frac{1}{h}\right)^2} = \frac{c}{2w} \sqrt{1 + \left(\frac{w}{h}\right)^2}$$
 ...(ii)

 $\frac{f_{c10}}{f_{c11}} = \frac{1}{2}$ given, ...(iii)

End of Solution

Detailed Solutions of

GATE 2019: Electronics Engineering

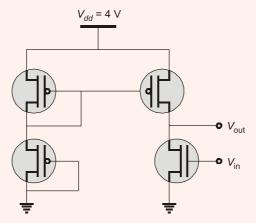
Date of Test: 09-02-2019

put (i), (ii) in (iii)

$$\Rightarrow \frac{\frac{c}{2w}}{\frac{c}{2w}\sqrt{1+\left(\frac{w}{h}\right)^2}} = \frac{1}{2} \Rightarrow \sqrt{1+\left(\frac{w}{h}\right)^2} = 2$$

On solving above equation, we get,

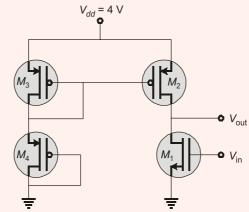
$$\frac{w}{h} = \sqrt{3} = 1.732$$


Q.37 In the circuit shown, the threshold voltages of the pMOS ($|V_{tp}|$) and nMOS (V_{tp}) transistors are both equal to 1 V. All the transistors have the same output resistance r_{ds} of 6 M Ω .

The other parameters are listed below:

$$\mu_n C_{ox} = 60 \,\mu\text{A/V}^2 ; \left(\frac{W}{L}\right)_{\text{nMOS}} = 5$$

$$\mu_p C_{ox} = 30 \,\mu\text{A/V}^2 ; \left(\frac{W}{L}\right)_{\text{pMOS}} = 10$$

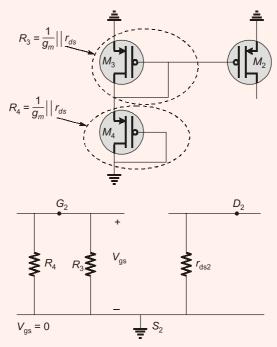

 $\mu_{\rm n}$ and $\mu_{\rm D}$ are the carrier mobilities, and $C_{\rm ox}$ is the oxide capacitance per unit area. Ignoring the effect of channel length modulation and body bias, the gain of the circuit is _____ (rounded off to 1 decimal place).

(-900)Ans.

> M_3 and M_4 are identical PMOS transistor and they have equal current. Hence their V_{SG} should be equal.

Date of Test: 09-02-2019

$$V_{SG3} = V_{SG4} = \frac{V_{DD}}{2} = 2 \text{ V}$$


$$I_{SD} = \frac{\mu_{\rho} C_{ox}}{2} \left(\frac{W}{L}\right)_{\rho} (V_{SG} - |V_{T}|)^{2}$$

$$= \frac{30}{2} \times 10(2 - 1)^{2} = 150 \text{ } \mu\text{A}$$

now, by using current mirror property all transistor should have equal current.

For
$$M_1$$

$$I_{DSN} = I_{SDP} = 150 \ \mu\text{A}$$

$$g_{m1} = \sqrt{2\mu_n C_{ox} \frac{W}{L} \times I_{DS}}$$

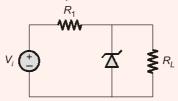
$$= \sqrt{2\mu_n C_{ox} \frac{W}{L} \times I_{DS}} = \sqrt{2 \times 60 \times 5 \times 150} = 300 \ \mu\text{V}$$

 M_2 , M_3 and M_4 from active load for M_1 . This active load in equivalent to resistance r_{ds2} i.e. 6 M Ω .

Detailed Solutions of

GATE 2019: Electronics Engineering

Date of Test: 09-02-2019


 M_1 is common source amplifier.

$$\frac{V_{\text{out}}}{V_{\text{in}}} = A_v = -g_{m1} \times (r_{ds2} \parallel r_{ds1})$$

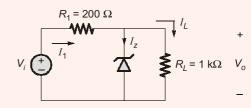
$$= -300 \text{ M} \circ \times 3 \text{ M} \Omega = -900$$

End of Solution

Q.38 In the circuit shown, the breakdown voltage and the maximum current of the Zener diode are 20 V and 60 mA. respectively. The values of R_1 and R_1 are 200 Ω and 1 k Ω . respectively. What is the range of V_i that will maintain the Zener diode in the 'on' state?

(a) 20 V to 28 V

(b) 24 V to 36 V


(c) 18 V to 24 V

(d) 22 V to 34 V

Ans. (b)

(b)
$$V_z = 20 \text{ V}$$

$$I_{z \text{ max}} = 60 \text{ mA}$$
 Set zener diode be OFF
$$V_z = V_i \times 1 - V_i \times$$

$$V_o = \frac{V_i \times 1}{0.2 + 1} = \frac{V_i}{1.2}$$

Zener diode can become ON i.e. it goes into breakdown, when

$$\frac{V_i}{1.2} > 20 \text{ V}$$

 $V_i > 24 \text{ V}$

When Zener diode is in breakdown region,

$$I_1 = \frac{V_i - 20}{0.2 \,\text{k}\Omega} = \frac{V_i - 20}{0.2} \,\text{mA}$$

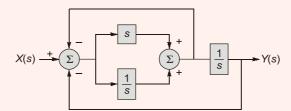
$$I_L = \frac{V_o}{R_L} = \frac{20}{1 \text{k}\Omega} = 20 \text{ mA}$$

$$I_z = I_1 - I_L = \frac{V_i - 20}{0.2} - 20$$

For safe operation, $I_z \le I_{z \text{ max}}$

$$\frac{V_i - 20}{0.2} - 20 \le 60$$

$$V_{.} \leq 36 \text{ V}$$


Hence,

$$V_i \le 36 \text{ V}$$

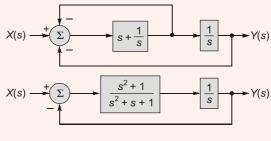
24 < V_i < 36 V

● ● End of Solution

Date of Test: 09-02-2019

The block diagram of a system is illustrated in the figure shown, where X(s) is the input Q.39 and Y(s) is the output. The transfer function $H(s) = \frac{Y(s)}{X(s)}$ is

(a)
$$H(s) = \frac{s^2 + 1}{2s^2 + 1}$$


(b)
$$H(s) = \frac{s^2 + 1}{s^3 + 2s^2 + s + 1}$$

(c)
$$H(s) = \frac{s+1}{s^2 + s + 1}$$

(d)
$$H(s) = \frac{s^2 + 1}{s^3 + s^2 + s + 1}$$

Ans. (b)

Using block diagram reduction, we get,

$$\frac{Y(s)}{X(s)} = H(s) = \frac{s^2 + 1}{s^3 + 2s^2 + s + 1}$$

Q.40 A single bit, equally likely to be 0 and 1, is to be sent across an additive white Gaussian noise (AWGN) channel with power spectral density $N_0/2$. Binary signaling, with $0 \to p(t)$ and $1 \rightarrow q(t)$, is used for the transmission, along with an optimal receiver that minimizes the bit-error probability.

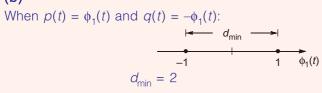
Let $\varphi_1(t), \varphi_2(t)$ form an orthonormal signal set.

If we choose $p(t) = \varphi_1(t)$ and $q(t) = -\varphi_1(t)$, we would obtain a certain bit-error probability P_b

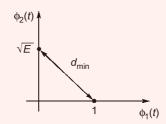
If we keep $p(t) = \varphi_1(t)$, but take $q(t) = \sqrt{E} \varphi_2(t)$, for what value of E would we obtain the same bit-error probability P_b ?

(a) 0

(b) 3


(c) 1

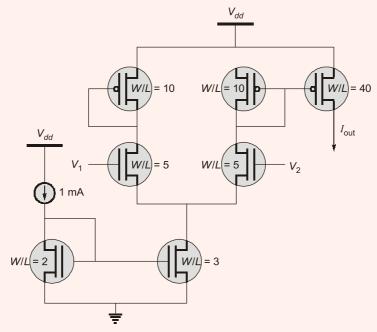
(d) 2


End of Solution

Date of Test: 09-02-2019

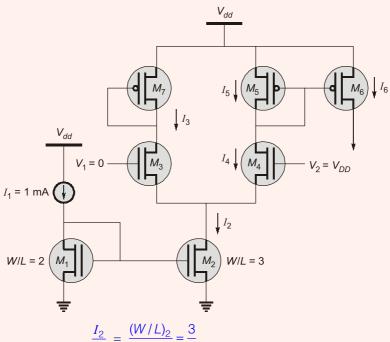
Ans. (b)

When $p(t) = \phi_1(t)$ and $q(t) = \sqrt{E} \phi_2(t)$:


$$d_{\min} = \sqrt{(\sqrt{E})^2 + 1} = \sqrt{E + 1}$$

To obtain same bit-error probability, d_{\min} should be same.

So,
$$\sqrt{E+1} = 2$$
$$E = 3$$


End of Solution

In the circuit shown. $V_1 = 0$ and $V_2 = V_{dd}$. The other relevant parameters are mentioned Q.41 in the figure. Ignoring the effect of channel length modulation and the body effect, the value of $I_{\rm out}$ is ____ mA (rounded off to 1 decimal place).

Date of Test: 09-02-2019

(6)Ans.

$$\frac{I_2}{I_1} = \frac{(W/L)_2}{(W/L)_1} = \frac{3}{2}$$

$$I_2 = \frac{3}{2} \times I_1 = 1.5 \text{ mA}$$

 M_3 is OFF because $V_1 = 0 \Rightarrow I_3 = 0$ M_4 is ON because $V_2 = V_{DD}$

$$I_5 = I_4 = I_2 = 1.5 \text{ mA}$$

$$\frac{I_6}{I_5} = \frac{(WL)_6}{(WL)_5} = \frac{40}{10} = 4$$

$$I_6 = 4I_5 = 4 \times 1.5 = 6 \text{ mA}$$

 $I_{\text{out}} = I_6 = 6 \text{ mA}$

End of Solution

Consider a causal second-order system with the transfer function Q.42

$$G(s) = \frac{1}{1 + 2s + s^2}$$

with a unit-step $R(s) = \frac{1}{s}$ as an input. Let C(s) be the corresponding output. The time

taken by the system output c(t) to reach 94% of its steady-state value $\lim_{t \to \infty} c(t)$, rounded

off to two decimal places, is

(a) 5.25

:.

(b) 4.50

(c) 2.81

(d) 3.89

General Studies & Engineering Aptitude Batches for ESE 2020

Syllabus Covered

- 1. Current issues of national and international importance relating to social economic and industrial development.
- Engineering Aptitude covering Logical reasoning and Analytical ability. 2.
- 3. Engineering Mathematics and Numerical Analysis.
- 4. General Principles of Design, Drawing, Importance of Safety.
- $Standards\ and\ Quality\ practices\ in\ production, construction, maintenance\ and\ services.$
- 6. Basic of Energy and Environment: Conservation, Environmental pollution and degradation, Climate Change, Environmental impact assessment.
- 7. Basic of Project Management.
- Basics of Material Science and Engineering. 8.
- Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
- 10. Ethics and values in engineering profession.

Course Duration	į	Timings	Teaching Hours
Regular Batches: 2.5 months		Regular: 6 to 7 days a week and 4-6 hours a day	250-300
Weekend Batches: 4 months		Weekend: Sat, Sun & public holiday, 8 hours each day	hours

Batch Type	Commencing Dates	Venue	Timing
Regular Batch	20 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 12:00 PM
Weekend Batch	24 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 5:00 PM
Weekend Batch	24 th Feb, 2019	Noida Centre	8:00 AM to 5:00 PM

Fee Structure				
Non-MADE EASY Students	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, GATE, GATE + ESE Batches			
₹ 25,000 • GS & Engg Aptitude Books will be issued.	• GS & Engg Aptitude Books will NOT be issued. • Interested students can avail books by paying the fee of Rs. 2,000/-			

GATE 2019: Electronics Engineering

Date of Test: 09-02-2019

Ans. (b)

$$G(s) = \frac{1}{s^2 + 2s + 1} = \frac{1}{(s+1)^2}$$

$$R(s) = \frac{1}{s}$$

$$C(s) = G(s)R(s) = \frac{1}{s(s+1)^2}$$

Using partial fraction expansion, we get,

$$C(s) = \frac{A}{s} + \frac{B}{(s+1)} + \frac{C}{(s+1)^2}$$

$$A(s^2 + 2s + 1) + B(s^2 + s) + Cs = 1$$

$$A = 1$$

$$A + B = 0 \Rightarrow B = -1$$

$$2A + B + C = 0 \Rightarrow C = -1$$

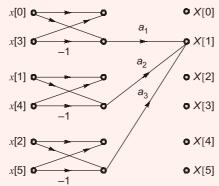
$$C(s) = \frac{1}{s} - \frac{1}{(s+1)} - \frac{1}{(s+1)^2} \quad \text{and} \quad c(t) = (1 - e^{-t} - te^{-t}) \ u(t)$$

$$\lim_{t\to\infty}c(t)=1$$

In order to reach 94% of its steady-state value,

$$(1 - e^{-t} - te^{-t}) = 0.94$$

By trial and error, we get,


$$t \approx 4.50 \text{ sec}$$

End of Solution

Q.43 Consider a six-point decimation-in-time Fast Fourier Transform (FFT) algorithm, for which

the signal-flow graph corresponding to X[1] is shown hi the figure. Let $W_6 = \exp\left(-\frac{j2\pi}{6}\right)$.

In the figure, what should be the values of the coefficients a_1 , a_2 , a_3 in terms of W_6 so that X[1] is obtained correctly?

(a)
$$a_1 = 1, a_2 = W_6^2, a_3 = W_6$$

(b)
$$a_1 = -1$$
, $a_2 = W_6^2$, $a_3 = W_6$

(c)
$$a_1 = -1$$
, $a_2 = W_6$, $a_3 = W_6^2$

(d)
$$a_1 = 1, a_2 = W_6, a_3 = W_6$$

GATE 2019: Electronics Engineering

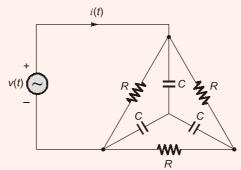
Date of Test: 09-02-2019

End of Solution

(d) Ans.

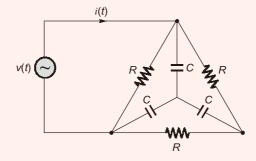
$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi}{N}kn} ; \quad X(1) = \sum_{n=0}^{5} x(n) W_6^n$$

= $x(0) + x(1) W_6 + x(2) W_6^2 + x(3) W_6^3 + x(4) W_6^4 + x(5) W_6^5 \dots (i)$


From the given flow graph,

$$X(k) = [x(0) - x(3)]a_1 + [x(1) - x(4)]a_2 + [x(2) - x(5)]a_3$$

By comparing equations (i) and (ii), we get,


$$a_1 = 1$$
, $a_2 = W_6$, $a_3 = W_6^2$

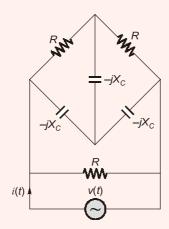
In the circuit shown, if $v(t) = 2 \sin(1000t)$ volts. $R = 1 \text{ k}\Omega$ and $C = 1 \mu\text{F}$, then the steady-Q.44 state current i(t), in milliamperes (mA), is

- (a) $3\sin(1000t) + \cos(1000t)$
- (c) $\sin(1000t) + 3\cos(1000t)$
- (b) $\sin(1000t) + \cos(1000t)$
- (d) $2\sin(1000t) + 2\cos(1000t)$

Ans. (a)

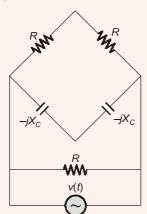
Here,

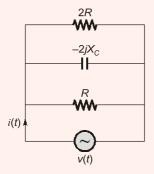
$$X_C = \frac{1}{\omega C} = \frac{1}{10^3 \times 10^{-6}} = \frac{1}{10^{-3}}$$

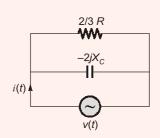

$$X_{0} = 10^{3} \Omega$$

$$X_C = 10^3 \Omega$$

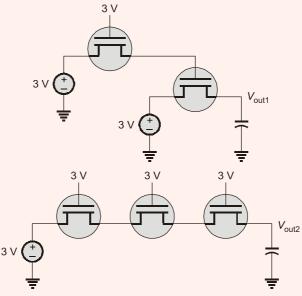
 $R = 10^3 \Omega$ (Given)


$$v(t) = 2\sin 1000t \ V = 2\angle 0^{\circ} \ V$$


Date of Test: 09-02-2019


Redrawing the given network, we get,

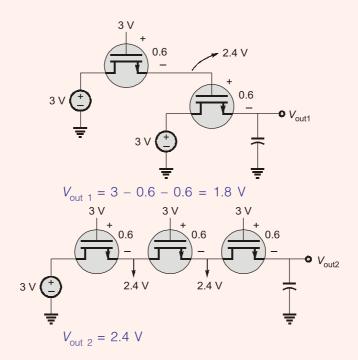
As the bridge is balanced, it can be redrawn as



$$\therefore Y_{\text{eq}} = Y_1 + Y_2 = \frac{3}{2}R + \frac{1}{-2jX_C} = \frac{3}{2} \times 10^{-3} + j\frac{1}{2} \times 10^{-3}$$

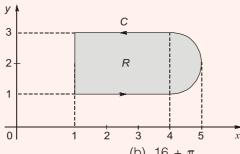
$$i(t) = v(t) \times Y_{eq} = 2 \angle 0^{\circ} \left[\frac{3}{2} + j \frac{1}{2} \right] mA$$
$$= (3 + j1) mA = 3sin(1000t) + cos(1000t) mA$$

Date of Test: 09-02-2019


Q.45 In the circuits shown, the threshold voltage of each nMOS transistor is 0.6 V. Ignoring the effect of channel length modulation and body bias, the values of $V_{\rm out1}$ and $V_{\rm out2}$. respectively, in volts, are

- (a) 1.8 and 2.4
- (c) 1.8 and 1.2

- (b) 2.4 and 1.2
- (d) 2.4 and 2.4


Ans. (a)

Q.46 Consider the line integral

$$\int_{C} (xdy - ydx)$$

the integral being taken in a counterclockwise direction over the closed curve C that forms the boundary of the region R shown in the figure below. The region R is the area enclosed by the union of a 2×3 rectangle and a semi-circle of radius 1. The line integral evaluates to

- (a) $12 + \pi$
- (c) $6 + \pi/2$

- (b) $16 + \pi$
- (d) $8 + \pi$

Ans. (a)

Given,
$$\int -y dx + x dy$$

here,

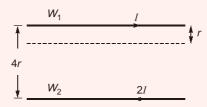
$$F_1 = -y$$
 and $\frac{\partial F_1}{\partial y} = -1$

$$F_2 = x$$
 and $\frac{\partial F_2}{\partial x} = 1$

$$\therefore \qquad \int F_1 dx + F_2 dy = \iint \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy$$

 $\int -y dx + x dy = \iint 1 - (-1) dx dy = 2(\text{Area of region } R) = 2\left(6 + \frac{\pi}{2}\right) = 12 + \pi$

Q.47 Two identical copper wires W_1 and W_2 placed in parallel as shown in the figure, carry currents I and 2I, respectively, in opposite directions. If the two wires are separated by a distance of 4r, then the magnitude of the magnetic field \vec{B} between the wires at a



End of Solution

distance r from W_1 is

Date of Test: 09-02-2019

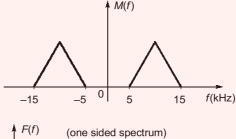
Ans. (d)

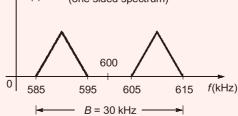
Magnetic flux density (\vec{B}) at *r* distance due to infinite line carrying current *I* is $|\vec{B}| = \frac{\mu_0 I}{2\pi \sigma}$

•
$$\vec{B}$$
 at r distance due to W_1 wire = $\left| \vec{B}_1 \right| = \frac{\mu_0 I}{2\pi r}$...(i)

•
$$\vec{B}$$
 at $3r$ distance due to W_2 wire = $\left| \vec{B}_2 \right| = \frac{\mu_0(2I)}{2\pi(3r)}$...(ii)

From right hand thumb rule, \vec{B} due to both lines add in between conductors.


So,
$$\left| \vec{B} \right| = \left| \vec{B}_1 \right| + \left| \vec{B}_2 \right|$$


$$|\vec{B}| = \frac{\mu_0 I}{2\pi r} + \frac{2\mu_0 I}{6\pi r} = \frac{5\mu_0 I}{6\pi r}$$

End of Solution

Q.48 A voice signal m(t) is in the frequency range 5 kHz to 15 kHz. The signal is amplitudemodulated to generate an AM signal $f(t) = A(1 + m(t)) \cos 2\pi f_c t$, where $f_c = 600$ kHz. The AM signal f(t) is to be digitized and archived. This is done by first sampling f(t)at 1.2 times the Nyquist frequency, and then quantizing each sample using a 256-level quantizer. Finally, each quantized sample is binary coded using K bits, where K is the minimum number of bits required for the encoding. The rate, in Megabits per second (rounded off to 2 decimal places), of the resulting stream of coded bits is ____ Mbps.

Ans. (0.59)

Nyquist rate =
$$\frac{2f_H}{\lfloor f_H/B \rfloor} = \frac{2 \times 615}{\lfloor 615/30 \rfloor} \text{kHz}$$

GATE 2019: Electronics Engineering Date of Test: 09-02-2019

$$= \frac{2 \times 615}{[20.5]} = \frac{2 \times 615}{20} = 61.5 \text{ kHz}$$

$$f_s = 1.2 \times 61.5 = 73.8 \text{ kHz}$$

Bits/sample, $n = \log_2(256) = 8$

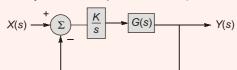
 $R_b = nf_s = 8 \times 73.8 \text{ kbps}$ So,

 $= 590.4 \text{ kbps} = 0.5904 \text{ Mbps} \simeq 0.59 \text{ Mbps}$

Note: If band-pass sampling is not considered by the examiner, then

$$f_s = 1.2 \times 2 \times 615 = 1476 \text{ kHz}$$

$$R_b = 8 \times 1.476 = 11.808 \simeq 11.81 \text{ Mbps}$$


● ● End of Solution

Q.49 Consider a unity feedback system, as in the figure shown, with an integral compensator

 $\frac{K}{s}$ and open-loop transfer function

$$G(s) = \frac{1}{s^2 + 3s + 2}$$

where K > 0. The positive value of K for which there are exactly two poles of the unity feedback system on the $j\omega$ axis is equal to _____ (rounded off to two decimal places).

Ans. (6)

$$\frac{Y(s)}{X(s)} = \frac{K}{s^3 + 3s^2 + 2s + K}$$

Two poles of this system lie on the $j\omega$ axis when the system is marginally stable.

$$k_{\text{mar}} = 3 \times 2 = 6$$

Q.50 Let h[n] be a length-7 discrete-time finite impulse response filter, given by

$$h[0] = 4$$
, $h[1] = 3$, $h[2] = 2$, $h[3] = 1$
 $h[-1] = -3$, $h[-2] = -2$, $h[-3] = -1$,

and h[n] is zero for $|n| \ge 4$. A length-3 finite impulse response approximation g[n] of h[n] has to be obtained such that

$$E(h,g) = \int_{-\pi}^{\pi} \left| H(e^{j\omega}) - G(e^{j\omega}) \right|^{2} d\omega$$

is minimized, where $H(e^{j\omega})$ and $G(e^{j\omega})$ are the discrete-time Fourier transforms of h[n]and g[n], respectively. For the filter that minimizes E(h, g), the value of 10g[-1] + g[1], rounded off to 2 decimal places, is _____

Date of Test: 09-02-2019

Ans. (-27)

From Parseval's theorem,

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 \; = \; \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| X(e^{j\omega}) \right|^2 \; d\omega$$

So,
$$\int_{-\pi}^{\pi} \left| H(e^{j\omega}) - G(e^{j\omega}) \right|^2 d\omega = 2\pi \sum_{n=-3}^{3} \left| h(n) - g(n) \right|^2$$

The solution of g(n) that minimizes E(h, g) also minimizes $\sum_{n=0}^{3} |h(n) - g(n)|^2$.

$$\sum_{n=-3}^{3} |h(n) - g(n)|^2 = |4 - g(0)|^2 + |3 - g(1)|^2 + |-3 - g(-1)|^2 + 10$$

The solution of g(n) that minimizes the above equation is

$$g(n) = \{-3, 4, 3\}$$

10g(-1) + g(1) = 10(-3) + 3 = -27So,

End of Solution

- Q.51 Consider a long-channel MOSFET with a channel length 1 µm and width 10 µm. The device parameters are acceptor concentration $N_A = 5 \times 10^{16}$ cm⁻³, electron mobility μ_n = 800 cm²/V-s, oxide capacitance/area C_{ox} = 3.45 × 10⁻⁷ F/cm², threshold voltage V_T =0.7 V. The drain saturation current (I_{Dsat}) for a gate voltage of 5 V is ____ mA (rounded off to two decimal places). [ε_0 = 8.854 X 10⁻¹⁴ F/cm, $\varepsilon_{\rm Si}$ = 11.9]
- Ans. (25.52)

$$I_{D \text{ (sat)}} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

$$= \frac{1}{2} \times 800 \times 3.45 \times 10^{-7} \times \frac{10}{1} (5 - 0.7)^2 \text{ A}$$

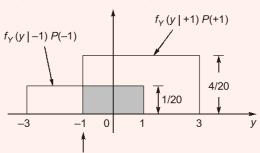
$$= 25.5162 \text{ mA} \approx 25.52 \text{ mA}$$

Q.52 A random variable X takes values –1 and +1 with probabilities 0.2 and 0.8. respectively. It is transmitted across a channel which adds noise N, so that the random variable at the channel output is Y = X + N. The noise N is independent of X, and is uniformly distributed over the interval -2, 2]. The receiver makes a decision

$$\widehat{X} = \begin{cases} -1, & \text{if } Y \le \theta \\ +1, & \text{if } Y < \theta \end{cases}$$

where the threshold $\theta \in [-1, 1]$ is chosen so as to minimize the probability of error $\Pr[\hat{X} \neq X]$. The minimum probability of error, rounded off to 1 decimal place, is _____.

GATE 2019: Electronics Engineering


Date of Test: 09-02-2019

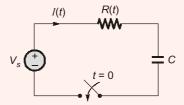
Ans. (0.10)

MAP criteria should be used to minimise the probability of error.

$$f_{\gamma}(y \mid + 1) P(+1) \underset{-1}{\overset{+1}{\geq}} f_{\gamma}(y \mid -1) P(-1)$$

$$P(+1) = 0.80$$
 and $P(-1) = 0.20$

Optimum threshold exists here


$$P_{e \text{ (min)}} = \text{Shaded area} = 2 \times \frac{1}{20} = 0.10$$

End of Solution

The RC circuit shown below has a variable resistance R(t) given by the following expression: Q.53

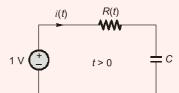
$$R(t) = R_o \left(1 - \frac{t}{T} \right) \text{ for } 0 \le t < T$$

where $R_o = 1 \Omega$, and C = 1 F. We are also given that $T = 3R_o C$ and the source voltage is $V_s = 1$ V. If the current at time t = 0 is 1 A. then the current I(t), in amperes, at time t = T/2 is _____ (rounded off to 2 decimal places).

Ans. (0.25)

$$T = 3R_oC = 3\sec$$

$$R(t) = \left(1 - \frac{t}{3}\right); \ 0 \le t \le 3 \sec$$


$$R(t) i(t) + \frac{1}{C} \int i(t) dt = 1$$

$$\left(1 - \frac{t}{3}\right)i(t) + \int i(t) dt = 1$$

Differentiating both sides, we get,

$$\left(1 - \frac{t}{3}\right) \frac{di}{dt} - \frac{i}{3} + i = 0$$

$$(3-t)\frac{di}{dt} + 2i = 0$$

Date of Test: 09-02-2019

$$\frac{di}{i} = -\frac{2}{(3-t)} dt$$

Integrating on both sides, we get,

$$ln(i) = 2ln(3 - t) + ln(c)$$

$$i(t) = c(3 - t)^2$$
; $t \ge 0$

Given that, i(0) = 1 A.

So,
$$c(3-0)^2 = 1 \text{ A}$$

$$C = \frac{1}{9} A$$

$$i(t) = \frac{1}{9} (3-t)^2 A$$

At
$$t = \frac{T}{2} = 1.5 \text{ sec}$$
,

At
$$t = \frac{T}{2} = 1.5 \text{ sec}$$
, $i(1.5) = \frac{1}{9} (1.5)^2 = 0.25 \text{ A}$

Q.54 The dispersion equation of a waveguide, which relates the wave-number k to the frequency ω, is

$$k(\omega) = \left(\frac{1}{c}\right)\sqrt{\omega^2 - \omega_0^2}$$

where the speed of light $c=3\times 10^8$ m/s, and ω_0 is a constant. If the group velocity is 2×10^8 m/s, then the phase velocity is

(a)
$$2 \times 10^8$$
 m/s

(b)
$$3 \times 10^8$$
 m/s

(c)
$$1.5 \times 10^8$$
 m/s

(d)
$$4.5 \times 10^8$$
 m/s

Ans. (d)

By definition
$$v_p = \frac{\omega}{\beta} = \frac{\omega}{k}$$

where,
$$k(\omega) = \left(\frac{1}{c}\right)\sqrt{\omega^2 - \omega_0^2}$$
 (given)

$$v_{p} = \frac{C}{\sqrt{1 - \left(\frac{\omega_{0}}{\omega}\right)^{2}}}$$

by definition,
$$v_g = \frac{d\omega}{d\beta} = \frac{d\omega}{dk} \implies \frac{dk}{d\omega} = \frac{1}{c} \frac{1}{2\sqrt{\omega^2 - \omega_0^2}} \times 2\omega$$

or
$$V_g = C\sqrt{1 - \left(\frac{\omega_0}{\omega}\right)^2}$$

$$V_{p} \cdot V_{q} = C$$

$$v_p = \frac{c^2}{v_q} = \frac{(3 \times 10^8)^2}{2 \times 10^8} = 4.5 \times 10^8 \text{ m/sec}$$

Q.55 The quantum efficiency (η) and responsivity (R) at a wavelength λ (in μ m) in a p-i-n photodetector are related by

(a)
$$R = \frac{1.24 \times \lambda}{\eta}$$

(b)
$$R = \frac{\eta \times \lambda}{1.24}$$

(c)
$$R = \frac{\lambda}{\eta \times 1.24}$$

(d)
$$R = \frac{1.24}{\eta \times \lambda}$$

Ans. (b)

$$\eta = \frac{I_{\text{out}}}{q} \times \frac{hf}{P_{\text{in}}}$$

$$R = \frac{I_{\text{out}}}{P_{\text{in}}}$$

$$R = \eta \times \frac{q}{hf} = \eta \times \frac{q\lambda}{hc}$$

If λ is given in μ m, then

$$R = \eta \lambda \times \frac{q \times 10^{-6}}{hc}$$

$$\frac{hc}{q \times 10^{-6}} \simeq 1.24$$

$$R = \frac{\eta \lambda}{1.24}$$